The PROOF® Framework

The execution layer for Al apps, agents and machines

The Collective
January 2026

v1.0



The PROOF® Framework v1.0

Abstract

AT agents are not businesses. They cannot hold value, prove their work, settle payments, or transact
independently. Until they can, autonomous Al remains a research project, not an economic reality.

PROOF® is the execution layer for Al apps, agents, and machines. It provides the infrastructure
for autonomous economic activity: verifiable computation, tamper-evident memory, cryptographic

provenance, and trustless settlement.

The framework is modular. Verifiable Execution provides cryptographically attested computation,
enabling agents to prove what was executed, by whom, and in what state. Onchain Memory
anchors agent state to cryptographic commitments, ensuring long-horizon reasoning is reproducible
and tamper-evident. Action Provenance (ERC-8004) creates canonical, auditable records of agent
actions. Payment Settlement (x402) enables proof-based transactions where payment occurs only
when work is verifiably complete. Agent Swarms provides discovery, negotiation, and coordination
for multi-agent workflows. Xybotics extends these guarantees to physical machines.

Each component is independent. Adoption is incremental. PROOF® provides the minimal, com-
posable foundation for the next generation of the agentic internet, where Al does not just assist the
economy, but operates within it.



Contents

Abstract

1

8

9

Problem Statement & Design Principles
1.1 The Problem: AI Agents Without Provability . . . . . ... ... ... ... . ...
1.2 Six Invariants of the PROOF® Framework . . . . . .. ................

The PROOF® Framework Overview

2.1 Position in the Xyber Architecture . . . . . . . . .. .. ... ... .. ... ...

2.2 Architecture Overview . . . . . . . . . ..
2.2.1 TEE Execution Module (TEEFi) . . . . .. ... ... ... ... ....
2.2.2  Onchain Memory Module . . . . . ... ... ... ... ... .........
2.2.3  Action Provenance Module (ERC-8004) . . .. . ... ... ... .......
2.2.4 Payment Settlements Module (x402) . . . . .. .. ... ... ..
2.2.5  Agent Swarms Module . . . . . . ... oL o
2.2.6  Agent Interoperability Protocol (AIP) . . . . ... ... ... ... ... ...

2.3 Modular Adoption Model . . . . . . ...

TEE Execution Module (TEEF1)
Onchain Memory Module

Action Provenance Module (ERC-8004)
Payment Settlements Module (x402)
Agent Swarms Module

Agent Interoperability Protocol (AIP)

Xybotics Module

10 Integration & Deployment

10.1 MCP Template (Standardized Agent Skeleton) . . . . ... ... ... ... .....
10.2 REST Interface Requirements . . . . . . . . . .. ... o
10.3 External Tools & Third-Party Agents . . . . . ... .. ... ... ... ....

11 Conclusion

References

w w W

[S1S; B <: B2 SIS B B ST

10

11

12
12
12
12

14

15



The PROOF® Framework v1.0

1 Problem Statement & Design Principles

1.1 The Problem: AI Agents Without Provability

Most Al agents still operate as opaque Web2 services. Their logic, memory, and payments depend
on centralized infrastructure, which makes them incompatible with trust-minimized environments.

e Memory cannot be verified. Agent state lives in mutable databases that can be changed or
selectively omitted, breaking long-horizon reasoning and multi-step workflows.

e Actions cannot be proven. There is no cryptographic evidence that an agent executed the
intended logic or respected constraints.

e Payments lack trust guarantees. Billing is centralized; only final results end up onchain,
with no proofs that the underlying work or resource usage was valid.

e Multi-agent workflows are unreliable. Without shared proofs for memory, execution, and
settlement, Buyer and Seller agents cannot safely collaborate or compose tasks.

This lack of provability is now the primary blocker for autonomous agents entering decentralized
systems, financial applications, and high-value operational environments.

1.2 Six Invariants of the PROOF® Framework

The PROOF® Framework is governed by a set of design principles that define its trust model,
composability, and developer ergonomics. These principles ensure that agent-based systems built
on PROOF® remain verifiable, modular, and usable without introducing unnecessary protocol
coupling.



The PROOF® Framework

v1.0

# Invariant Definition Guarantees

I Attested Execution All critical execution, when used, orig- Execution authenticity,
inates from a verifiable Trusted Execu- non-forgeable identity,
tion Environment (TEE). Code iden- operator-independent
tity, inputs, outputs, and signing keys trust
are bound to an enclave measurement.

II  Verifiable State Agent state transitions are crypto- Tamper-evident state,
graphically provable. When enabled, reproducibility, long-
memory follows a Sparse Merkle Tree horizon consistency
model preventing silent modification,
reordering, or rollback.

III  Canonical Action Provenance Every meaningful action can be re- Auditable history, replay
duced to a canonical, replay-safe com- protection, deterministic
mitment binding execution metadata, verification
declared I/0, and onchain state refer-
ences.

IV Proof-Based Settlement Economic settlement is conditional on  Trustless payment, no
verifiable work.  Invoices, payment wunpaid execution, no
proofs, and execution commitments ambiguous delivery
form a single deterministic lifecycle.

V' Deterministic Coordination Multi-agent interactions follow Predictable workflows,
protocol-defined  discovery, negoti- safe composition, cross-
ation, execution, and cancellation agent trust
flows, verifiable against agent identity
and provenance.

VI  Modular Composability All guarantees are modular and op- Incremental adoption,

tional. Each PROOF module pro-
vides an isolated property that com-
poses through shared interfaces with-
out full-stack coupling.

no lock-in, flexible inte-
gration

Table 1: Six Invariants

2 The PROOF® Framework Overview

The PROOF® Framework establishes a unified, verifiable architecture for autonomous agents. It

replaces opaque Web2 backends with a provability-first pipeline that covers execution, memory,

action provenance, and inter-agent settlement. Each layer operates independently yet composes

into a single trust-minimized system that any agent can adopt without custom infrastructure.

2.1 Position in the Xyber Architecture

Within the XYBER stack, PROOF® acts as the foundational layer ensuring that agents created by
users, builders, or third-party ecosystems can operate with cryptographic accountability. It provides

the guarantees required for permissionless discovery, multi-agent workflows, Swarm interactions, and

verifiable economics across XYBER products, including the XYBER App Store and 0-100 Engine

launches. PROOF® transforms agents from centralized applications into verifiable digital actors

with reproducible behavior, trustworthy memory, and PROOF®-backed outputs.

2.2 Architecture Overview

The PROOF® Framework is a modular execution system that gives agents verifiable computation,

memory, provenance, coordination, and settlement capabilities.



The PROOF® Framework v1.0

Each PROOF® Module is independent and optional, allowing builders to adopt only the compo-
nents their agents require.

Coordination Modules Payment Settlements

! Agent Swarms iAIP

: [ Discovery ] : : i

[ Negotiations J 1 Cross-chain messaging Invoices Onchain payment proofs
E l Onchain registry l i :

i ERC-8004 i | ONCHAIN MEMORIES

! Action completion proofs I ' Receipts
: ( Action provenance ) [
' v Onchain SMT roots
H [ Memory anchoring ] i
TEEFI
Tamper-proof wallets Secure compute Enclave identity

Figure 1: The PROOF® Architecture

2.2.1 TEE Execution Module (TEEFi)

Provides isolated, attestable compute for running sensitive logic, generating proofs, and securely
managing keys. This module ensures every agent action originates from a trusted execution envi-
ronment.

2.2.2 Onchain Memory Module

Anchors agent state to an onchain Sparse Merkle Tree (SMT). All reads and writes produce proofs,
ensuring tamper-evident, reproducible memory across long-horizon workflows.

2.2.3 Action Provenance Module (ERC-8004)

Defines how agent actions become verifiable onchain commitments. Each action produces an ERC-
8004 event containing input/output commitments, TEE identity, and execution metadata.

2.2.4 Payment Settlements Module (x402)

A PROOF®-based settlement system allowing agents to pay each other only when work is provably
completed. Invoices, payment proofs, and settlement receipts are all linked to action provenance.
2.2.5 Agent Swarms Module

Used for capability discovery, multi-round negotiation, workflow orchestration, and structured task
execution between agents.

2.2.6 Agent Interoperability Protocol (AIP)

Provides authenticated, cross-chain messaging so agents can coordinate across different blockchains
while maintaining shared state references.

2.3 Modular Adoption Model

PROOF® does not require full-stack adoption. Developers may integrate: only TEE execution,
TEE + action provenance, settlement without onchain memory, full multi-agent coordination via
Swarms, etc.



The PROOF® Framework v1.0

Each module provides isolated guarantees and composes through well-defined interfaces. This allows
Web2 and Web3 developers alike to incrementally introduce provability where it is required, without
rewriting existing systems.

Module Attestation State Provenance Settlement Coordination Cross-chain

TEEFi .

Onchain Memory °

ERC-8004 °

x402 °

Agent Swarms 4

ATP .

Table 2: Capability Matrix

3 TEE Execution Module (TEEFi)

The TEE Execution Module provides the trusted compute foundation of PROOF®. Agent logic
runs inside a hardware-backed enclave where execution, key usage, and output generation are fully
attested. This establishes a verifiable root of trust for all downstream modules.

TEEFi ensures that every action originates from an authenticated enclave instance. The enclave
binds inputs, code identity, and outputs into a single attested context that external systems can
independently verify. All identity, signing, and x402-related keys are generated and stored inside the
enclave and cannot be exported, guaranteeing that every signature is inseparable from the enclave
that produced it.

Execution results include enclave measurement, code hash, input/output commitments, and meta-
data required for ERC-8004 action records. Memory operations are signed by the enclave and tied to
specific SMT state transitions, enabling tamper-evident and reproducible read /write semantics for
the Onchain Memory Module. Settlement flows rely on enclave-generated invoices, replay-protected
payment messages, and verification routines that confirm the legitimacy of incoming payment proofs.

All external interactions follow strict execution policies. Tool calls, API requests, and negotiation
messages are validated against predefined schemas, and every outbound message is signed and
traceable to a known enclave identity. This prevents unauthorized computation, data leakage, or
unverified state transitions.

TEEFi is fully integrated into the MCP agent template, which provides enclave initialization, at-
testation flow, memory hooks, and settlement handlers. Developers supply only the business logic;
the template ensures that all outputs conform to PROOF®’s verifiability requirements.

By anchoring computation to an attested environment with isolated keys and deterministic identity,
TEEFi enables agents to operate as trustworthy autonomous systems. It is the prerequisite module
that guarantees the correctness of provenance records, memory updates, coordination flows, and
payment settlements across the entire PROOF® framework.

TEE Security Note: TEEFi assumes deployment on secured cloud infrastructure where physical
access to enclave hosts is restricted. Known TEE vulnerabilities require physical access and do not
allow arbitrary execution control. PROOF® treats TEE attestation as one layer within a defense-in-
depth architecture, combining it with verifiable provenance, state commitments, and payment-gated

execution to mitigate vendor- and hardware-level risks.



The PROOF® Framework v1.0
- A) Deploy *****************************************************************************************************

App
m
|

|
I
|
A1) Push Code —— > |
|
|

B) Runtime Execution

B2) Process Request 4)

I
I
|
|
|
|
|
I
I
I
I
+—— B1) Send Request 7:
|
|
I
I
I
I
|
|
|
|
I

1
|
|
|
|
|
|
| |
! Downstream Usage of TEE Quote !
| | |
| | «— = ERC-8004 = x402 = Onchain Memory |
| |
-------- 1 I

A
Crea!or PROOF°® S
(in TEE Enclave)

Figure 2: The PROOF® TEEFi

4 Onchain Memory Module

The Onchain Memory Module provides a verifiable state model for agents by replacing mutable
databases with cryptographically anchored state transitions. All memory updates occur over a
Sparse Merkle Tree (SMT) maintained inside the enclave, producing state roots and proofs that
external systems can independently validate.

Each write operation updates the SMT and generates a PROOF® describing the exact modification
to the tree. The enclave signs both the pre-state and post-state roots, ensuring that no value can be
inserted, altered, or removed without producing a detectable inconsistency. Read operations return
the requested value along with a PROOF® path confirming that the value is consistent with the
current committed root.

To balance verifiability and performance, the system maintains two roots: a temporary root updated
on every write inside the enclave, and an onchain root periodically committed as the authoritative
reference point. Every root transition is tied to an attested execution context, enabling recon-
structible and reproducible reasoning across multi-step workflows.

Crash recovery is handled through a sealed snapshot stored by the enclave. Upon restart, the
enclave restores its latest temporary root and reconciles it with the last published root onchain.
This prevents rollback attacks and guarantees continuity of state even under unexpected failures.

Other PROOF® modules depend on this verifiable memory model. ERC-8004 action commitments
include memory references and root transitions, allowing any observer to replay the logical pathway
leading to an action. Settlement flows can validate that paid work corresponds to a specific state
transition, and Swarm interactions rely on shared, provable facts exchanged between agents.

By anchoring long-horizon state to a tamper-evident structure, the Onchain Memory Module ensures
that agent behavior is consistent, auditable, and reproducible across time, counterparties, and
chains.

5 Action Provenance Module (ERC-8004)

The Action Provenance Module defines how agent actions become verifiable, onchain-referencable
facts. Each action executed inside the enclave produces an attested result that is transformed into



The PROOF® Framework v1.0

TEE Enclave i
i Blockchain
Verifiable Memory API Service i
-
mmire Root Manager &
igheinoyaieibigioct Verification Logic “«—

Database
App Business

A ‘ Disk
tege Lo :
‘ 1

Trusted_State.json L 2)
(Persistent_ Local lCache) ] | —{ Remote Attestation & Key Release }—4 —/
o Provable KMS
o s . Service

Figure 3: The PROOF® Onchain Memory

a standardized ERC-8004 action commitment. This commitment serves as the canonical, tamper-
evident record of what the agent did, under which identity, and with which declared inputs and
outputs.

An ERC-8004 action event includes the enclave measurement, code hash, ordered execution meta-
data, and a cryptographic commitment over the action’s declared I/0O. This ensures that any off-
chain envelope containing the full action details can be matched deterministically to the onchain
commitment. Because the commitment is signed inside the enclave, provenance cannot be forged
or altered after execution.

Action ordering is enforced through nonces or sequencing fields embedded in the event structure.
This prevents replay, duplication, or reordering of actions that would otherwise corrupt agent histo-
ries. Optional references allow the event to include pointers to TEE attestation data, memory-state
roots, or off-chain payloads stored on decentralized storage networks.

This module links execution to memory and settlement: memory operations recorded during an
action reference the SMT roots associated with that moment; payment flows under x402 attach
invoices and proofs to specific action IDs; and Swarm negotiations can require prior action commit-
ments before proceeding. As a result, every step in a workflow becomes independently verifiable.

Through ERC-8004, agent behavior forms a continuous, externally auditable narrative. Any participant—
another agent, a smart contract, or a human verifier—can reconstruct the logic path leading to a
result, validate its consistency with the agent’s state, and confirm that it originated from the ex-
pected enclave identity. This establishes a shared trust foundation for multi-agent coordination and
autonomous economic activity.

ERC-8004 Module

TEEFi Model
Onchain Verification

= Agent ID
* Input Payload Hash = Signature Valid
» Output Payload Hash Store = Code Identity Correct
= SMT Root (Onchain Memory) = Hashes Match

m)

i Onchain Memory Model
Agent / App / Robot E i

= Execution Signature

x402 Settlement Module

Figure 4: The PROOF® Action Provenance

6 Payment Settlements Module (x402)

The Payment Settlements Module provides a PROOF®-based mechanism for transferring value
between agents. Instead of relying on trusted billing or off-chain agreements, x402 ties every payment
to a verifiable action and an attested enclave identity, ensuring that economic exchanges occur only
when the underlying work can be cryptographically validated.



The PROOF® Framework v1.0

A settlement workflow begins when a seller generates an x402 invoice inside the enclave. The
invoice defines the amount, expiration, replay guards, and the action or service being charged for,
all bound to the seller’s attested identity. The buyer settles the invoice by producing a payment
PROOF®—an attested confirmation that funds were transferred or locked according to the invoice
terms. Because both invoice and PROOF® originate from enclaves, no party can forge or alter the
settlement state.

Before executing the requested task or releasing the final output, the seller verifies the buyer’s
payment PROOF® inside its enclave. This verification checks that the PROOF® corresponds
to the correct invoice, has not expired, has not been previously settled, and originates from the
expected buyer. If validation fails, the request is rejected and the buyer must obtain a new invoice.

Execution results and their associated ERC-8004 commitments become the settlement’s confirma-
tion of delivery. These commitments allow external parties to verify that the paid-for action was
actually executed under the correct enclave and in the correct state context. Because x402 messages
are tied to specific action IDs, settlement cannot drift from the workflow it is meant to support.

Time-bounded negotiation and expiration rules ensure deterministic recovery in case of dropped
sessions or non-responsive agents. Combined with provenance and verifiable memory, x402 creates
a settlement layer where payments and work form a single, auditable lifecycle. This enables trustless
service markets, autonomous contracting, and persistent multi-agent economies.

— KB Request Data/ Task Completion |

Payment Required |—E—
—n-{ Onchain Payment / Task Completion I

Buyer Agent Task Execution in TEE 4 Seller Agent

Figure 5: The PROOF® Payment Settlements

7 Agent Swarms Module

The Agent Swarms Module enables structured coordination between autonomous agents by pro-
viding mechanisms for capability discovery, relevance matching, negotiation, and controlled task
execution. It establishes a deterministic interaction surface where agents can form workflows with-
out prior integration or trust assumptions.

A swarm interaction begins when a buyer agent defines a task and queries the swarm layer for
suitable providers. Seller agents publish machine-readable capability descriptions that include func-
tional scope, input/output expectations, and optional constraints. The swarm layer evaluates these
descriptions, returning a ranked set of candidates based on capability metadata and semantic rele-
vance to the task.

Before execution, agents negotiate a shared contract describing required inputs, expected outputs,
acceptance conditions, and settlement terms. This negotiation follows a structured schema to
ensure that both parties converge on an unambiguous agreement. Once terms are finalized, the
buyer initiates settlement through x402, and the seller validates the payment PROOF® inside its

enclave.

Execution occurs within the seller’s TEE and produces ERC-8004 action commitments and, when



The PROOF® Framework v1.0

applicable, memory-state transitions. These outputs allow the buyer—or any verifier—to confirm
that the requested operation was executed under the expected conditions. The result is returned in
a structured format that supports chaining into subsequent steps within a larger workflow.

The swarm layer defines clear timeout and cancellation semantics to handle non-responsive partic-
ipants or interrupted negotiation cycles. Because all actions, payments, and state changes are tied
to attested identities and reproducible provenance, multi-agent workflows become predictable and
auditable across heterogeneous systems.

Through this module, agents operate not as isolated services but as interoperable components
capable of forming decentralized execution networks, composing complex tasks, and coordinating
economic activity without centralized orchestration.

Buyer Agent Marketplace Seller Agent
1
| \
'

(Assign Task) Search Sellers ——

1
1
1
[
[
L SendRequest I
1
|
: <«+—— Relevant Seller Agent ID
|

Payment
1

Task Execution Results

1 1 1
1 I 1
<+—— Task Execution Results ————— 1 |
1 I 1

Buyer Agent Marketplace Seller Agent

Figure 6: The PROOF® Agent Swarms

8 Agent Interoperability Protocol (AIP)

The Agent Interoperability Protocol enables agents operating on different blockchains to coordinate
through authenticated, verifiable cross-chain messages. AIP ensures that actions, state references,
and negotiation flows remain consistent across networks, allowing agents to function as unified

systems even when their execution environments reside on separate chains.

A cross-chain interaction begins when an agent produces a signed message inside its enclave de-
scribing the intended action, the target chain, and the relevant state references. This message is
attested to the enclave identity, preventing spoofing or unauthorized cross-chain instructions. A
verified relay validates the message’s origin, integrity, and sequencing before submitting it to the
destination chain.

On the receiving side, smart contracts or agent runtimes process the message according to the
declared semantics: executing a task, updating shared state, or initiating a response. Both chains
record the interaction hash or commitment, establishing a bidirectional audit trail that can be
reconstructed independently by any participant. This prevents replay, duplication, or divergence
between chains.

AIP relies on the same guarantees provided by TEEFi, ERC-8004, and the Onchain Memory Module.
Each message references the sending agent’s state root and may include pointers to prior action
commitments, ensuring that cross-chain interaction occurs only from a verifiable and known state.
Settlement and negotiation flows can depend on these references to maintain consistency across
networks.

10



The PROOF® Framework v1.0

By providing authenticated cross-chain communication, AIP allows agents to compose workflows
that span multiple environments, aggregate resources across chains, and coordinate without cen-
tralized bridging infrastructure. This module extends the PROOF® model from single-chain trust
to a multi-chain execution fabric, enabling agents to operate as globally interoperable systems.

Chain A 5 AIP E Chain A

'
,@ [ Transmitter of Chain A . i}
' '
AgentA 1 | Agent B
| : |
' '
' '

Check Proofs (TEE Hash, = 5
Receive Validated Message

SMT Root Memory, etc.)

'
| Generate Message | |Fetch Event| s {
'

Master Smart Contract
'

1
' B | PushMessage

' '
: | : Push
Endpoint H ‘ itter of Chain B | Validated Endpoint
! ‘ ! Message
' '

Figure 7: The PROOF® AIP

9 Xybotics Module

The Xybotics Module extends PROOF® from digital agents to physical machines by applying
verifiable execution, provenance, and settlement guarantees to real-world robotics. Each robot
operates as an onchain-controlled entity whose behavior, commands, and economic interactions are

anchored to the same cryptographic primitives that govern software agents.

A robotic system integrates with XYBER through a standardized Al-to-Robot interface, allowing
the agent’s enclave to issue high-level commands without requiring custom firmware or proprietary
vendor APIs. Every command is produced inside TEEFi, signed, and linked to the robot’s identity,
ensuring that physical actions originate from a verifiable source and cannot be forged or tampered
with by the operator.

Execution of a physical action generates an ERC-8004 commitment that records the command,
relevant state references, and the attested enclave identity. This provides an immutable audit trail
for every movement or operation performed by the machine. When robots maintain internal state—
such as pose, telemetry, or task progress—those updates are captured through the Onchain Memory
Module, producing reproducible state transitions tied to real-world behavior.

Robots can earn, spend, and participate in economic workflows using x402. Payments for completed
tasks are linked to specific action commitments, ensuring that financial settlement occurs only
when the robot’s work is verifiably executed. Multi-robot or human-robot coordination is handled
through the Swarms Module, which enables negotiation, task delegation, and workflow chaining
across heterogeneous physical systems.

Xybotics also supports simulation-based development. Robots can be trained or evaluated in virtual
environments where the same PROOF® primitives—TEEFi execution, ERC-8004 provenance, and
verifiable memory—apply identically. Results generated in simulation can be exported as proofs for
real-world deployment, enabling reproducible calibration and continuous improvement.

Through Xybotics, physical machines become agents with cryptographically provable behavior,
uniform programmability, and onchain economic identity. This allows robotics to operate as part of
the same trust-minimized ecosystem as digital agents, forming a unified computational and physical
intelligence network.

11



The PROOF® Framework v1.0

10 Integration & Deployment

The PROOF® Framework is designed to be adoptable with minimal friction. Developers can
onboard new agents using standardized interfaces, the MCP template, and a predictable deployment
workflow that abstracts away cryptographic complexity. This ensures that any agent—regardless of
language, infrastructure, or use case—can become fully PROOF®-compliant.

10.1 MCP Template (Standardized Agent Skeleton)

XYBER provides an MCP-based agent template that bundles all core provability components:

o TEE execution and attestation pipeline

Onchain Memory integration and Merkle-path verification

ERC-8004 action-provenance generation

x402 settlement flow and invoice handling

e Standardized REST API layer

This template eliminates the need for custom backend engineering. Developers supply the agent’s
business logic, while the template handles verifiability, identity, state integrity, and settlement.

10.2 REST Interface Requirements

Agents must expose a minimal set of REST endpoints (or MCP equivalents) to participate in Swarms
and PROOF®-based workflows:

e /capabilities — describe available functions and pricing models

/negotiate — handle contract formation and revisions

/execute — accept x402 proofs and produce attested results

/status — optional endpoint for monitoring task progress

/schema — optional structured definitions for complex tasks
All endpoints must follow:

deterministic JSON schemas

e clear error semantics

e HTTPS/TLS enforcement

consistent timeout and retry policies

These constraints ensure safe multi-agent interoperability in untrusted environments.

10.3 External Tools & Third-Party Agents

PROOF® is intentionally open and permissionless. Agents developed outside XYBER can integrate
by:

e adopting the MCP template
e implementing the REST interface directly

e using their own backend combined with TEE-based execution

12



The PROOF® Framework v1.0

e or running as hybrid systems where only sensitive components execute in the enclave

13



The PROOF® Framework v1.0

11 Conclusion
PROOF provides the missing infrastructure for autonomous Al.

Today, agents can reason but cannot transact. They can execute tasks but cannot prove their work.
They can collaborate but cannot settle trustlessly. These gaps are not features to be added. They
are the foundation no one built.

PROOF builds it. Verifiable execution. Tamper-evident memory. Cryptographic provenance.
Proof-based settlement. Deterministic coordination. Each module independent. Each guarantee
composable.

The result is a new category of digital actor: Al that earns, spends, proves, and operates on its own
terms. Not automation. Not tooling. Economic agency.

The next generation of the internet will be agentic. PROOF is the execution layer that makes it
possible.

14



The PROOF® Framework v1.0

References

1. Intel Corporation.
Intel® Software Guard Extensions (SGX) Developer Reference.
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/

overview.html

2. Ethereum Foundation.
ERC-8004: Trustless Agent Action Commitments (Draft).
https://eips.ethereum.org/EIPS/eip-8004

3. Dahlberg, R., Pulls, T., Peeters, R., Perdana, A.
Efficient Sparse Merkle Tree Commitments for Key-Value Stores.
https://eprint.iacr.org/2016/683.pdf

4. x402.
x402: Payment Settlement Protocol for Autonomous Agents.
https://github.com/coinbase/x402

5. Anthropic.

Model Context Protocol (MCP).
https://modelcontextprotocol.io

15


https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://eips.ethereum.org/EIPS/eip-8004
https://eprint.iacr.org/2016/683.pdf
https://github.com/coinbase/x402
https://modelcontextprotocol.io

	Abstract
	Problem Statement & Design Principles
	The Problem: AI Agents Without Provability
	Six Invariants of the PROOF® Framework

	The PROOF® Framework Overview
	Position in the Xyber Architecture
	Architecture Overview
	TEE Execution Module (TEEFi)
	Onchain Memory Module
	Action Provenance Module (ERC-8004)
	Payment Settlements Module (x402)
	Agent Swarms Module
	Agent Interoperability Protocol (AIP)

	Modular Adoption Model

	TEE Execution Module (TEEFi)
	Onchain Memory Module
	Action Provenance Module (ERC-8004)
	Payment Settlements Module (x402)
	Agent Swarms Module
	Agent Interoperability Protocol (AIP)
	Xybotics Module
	Integration & Deployment
	MCP Template (Standardized Agent Skeleton)
	REST Interface Requirements
	External Tools & Third-Party Agents

	Conclusion
	References

