
The 0-100 Engine®

The First Fair Launch Primitive

The Collective

January 2026

v1.0

The 0-100 Engine v1.0

Abstract
Bonding curves enabled permissionless launches but favored speed over fairness. The 0-100 Engine
is the next primitive: a fully onchain launch mechanism where the rules are fixed, verifiable, and
equal for everyone.

Each launch follows a single, immutable preset: capped contributions, ticket-based funding, ran-
domized selection for overflow, and automatic liquidity deployment. No creator-side tuning. No
discretionary decisions. All parameters enforced by the protocol.

Unused contributions are fully refundable. Supply splits are standardized. Liquidity is protocol-
owned. Post-listing fees flow back to creators, the community, and the Xyber treasury.

Fairness is a property of the code, not a promise.

1

Contents

Abstract 1

1 Problem Statement and Design Principles 3
1.1 Structural Issues in Existing Launch Mechanisms . 3
1.2 Design Principles . 3

2 Launch Models Comparison 4

3 The 0-100 Engine Overview 5
3.1 Actors & Roles . 5
3.2 Launch Lifecycle . 5
3.3 Standardized Launch Parameters . 5

4 Core Mechanics 6
4.1 Creator Self-Snipe & Vesting Extension . 6
4.2 Capped Wallet Funding Pool . 7
4.3 Overflow + Randomized Allocation . 7
4.4 Selection Probability . 7
4.5 Sale Allocation & Claim . 7
4.6 Randomized LP Creation Window . 8
4.7 Built-in Anti-Snipe . 8
4.8 Post-Listing Fees & Distribution . 8

5 Token Supply & Economic Flows 9
5.1 Standardized Supply Split . 9
5.2 Dynamic Fee Model . 9
5.3 $XYBER Buybacks & Treasury Flows . 9

6 On-Chain Architecture 10
6.1 Contract Surface . 10

6.1.1 engine program . 10
6.1.2 income_dispatcher program . 10

6.2 Permissionless Trust Model . 10

7 Security & Audit Status 11

8 Limitations & Risks 11

9 Conclusion 12

References 12

2

The 0-100 Engine v1.0

1 Problem Statement and Design Principles

1.1 Structural Issues in Existing Launch Mechanisms
Open token launches expose participants to a set of well-documented structural failures:

• Execution asymmetry. Participants with superior infrastructure (custom RPCs, MEV bots,
private orderflow) gain persistent advantages through priority gas auctions and optimized trans-
action ordering.

• Allocation opacity. Distribution is governed by allowlists, off-chain negotiations, or configurable
policies, making independent verification of allocation integrity impossible.

• Liquidity initialization risk. Pool parameters, initial pricing, and lockup conditions are fre-
quently controlled by creators, enabling fake pools, mispriced listings, or liquidity withdrawal
post-launch.

• Capital inefficiency. In oversubscribed sales, excess funds are trapped or returned through ad-
hoc logic. Users incur transaction costs without guarantees on final allocation or refundability.

As demand for a launch increases, these structural problems become more severe: more bots, more
gas competition, and greater uncertainty around how and when liquidity will actually be deployed.

1.2 Design Principles
The 0-100 Engine addresses these failures through six invariants enforced at the protocol level:

1. Symmetric participation. Per-wallet caps and ticketized contributions ensure allocation is
determined by protocol rules, not transaction speed, gas bidding, or off-chain negotiation.

2. Deterministic execution. The entire lifecycle (funding, selection, minting, liquidity creation,
claims) is encoded in a self-contained program with deterministic state transitions and explicit
authority separation via PDAs.

3. Unbiased randomness. Overflow selection and LP timing derive from blockhash-based ran-
domness. All participants face identical probabilistic conditions.

4. Protocol-owned liquidity. LP parameters are precommitted. A fixed supply share is routed
into protocol-controlled liquidity with defined lockup behavior.

5. Transparent economics. Supply splits and post-listing fee distribution are standardized and
onchain. No per-project negotiation.

6. Non-custodial execution. All funds flow through PDAs. No single key can redirect assets,
override selection, or modify parameters post-initialization.

These invariants collectively define the constraints under which the 0-100 Engine operates: one
preset, fully observable onchain behavior, and no reliance on discretionary off-chain decisions for
either allocation or economics.

3

The 0-100 Engine v1.0

2 Launch Models Comparison
Existing launchpads generally follow one of three patterns: gas-priority IDOs, private/whitelisted
allocations, or unstructured meme-driven listings. Each model defines execution rules, allocation
logic, liquidity formation, and incentive alignment in fundamentally different ways.

The 0-100 Engine introduces a fourth category: a standardized, non-configurable preset where all
core parameters are enforced directly onchain.

Criterion Traditional
IDOs

Private/
Whitelisted

Meme
Pumps

0-100 Engine

Execution Gas bidding,
mempool order-
ing

Off-chain selec-
tion, allowlists

Instant trad-
ing, high bot
activity

Deterministic flow,
fixed tickets, strict
caps

Allocation First-come-first-
served

Discretionary
per-user

No structured
sale

Randomized selection;
full refunds

Transparency Low Low Medium High

Fairness Bot advantage Insider advan-
tage

Early-buyer
dominance

Symmetric constraints

Liquidity Manual, discre-
tionary

Negotiated
terms

Creator-
controlled

Protocol-owned, auto-
mated

Capital Ef-
ficiency

Low Medium Unpredictable High

Table 1: Launch Model Comparison

4

The 0-100 Engine v1.0

3 The 0-100 Engine Overview

3.1 Actors & Roles
• Creator. Creates the agent and initiates the token launch through the 0-100 Engine. Receives

a vested allocation after a successful launch and operates the project’s Rewards Portal.

• Contributors. Deposit SOL during the funding phase in exchange for tickets. Selected contrib-
utors receive token allocation proportional to their approved deposits; unselected contributions
are fully refundable.

• Engagers. Participate in quests and leaderboards within the project’s Rewards Portal post-
launch. Earn a share of trading fees routed through the income dispatcher.

• Xyber Protocol. Provides the standardized launch framework, enforces all parameters onchain,
deploys and owns the liquidity pool, and routes trading fees into the dynamic fee distribution
system.

3.2 Launch Lifecycle
The 0-100 Engine structures every launch as a deterministic, fully onchain sequence:

1. Creator initializes the launch with precommitted parameters

2. Users contribute through ticketized deposits within wallet caps

3. Protocol resolves overflow using blockhash-based randomness

4. Liquidity is deployed at a probabilistically selected block

5. Post-launch trading fees flow to creators, community, and buybacks

This lifecycle removes timing manipulation, enforces strict per-wallet and hard caps, guarantees re-
fundability of unused contributions, and standardizes liquidity and fee mechanics across all projects.

3.3 Standardized Launch Parameters
All launches follow the same fixed parameter set:

Parameter SOL ETH Equivalent Description

Total Supply 1,000,000,000 – Hard-coded per launch

Sale Allocation 48.14% – Distributed to selected contributors

Liquidity Allocation 41.86% – Permanently paired into initial pool

Creator Allocation 10% – Linear vesting over 12 months

Creator Self-Snipe Up to 8 SOL ≈ 0.5 ETH Each 1 SOL adds 24h vesting

Hard Cap∗ 450 SOL ≈ 30 ETH Maximum accepted raise

Minimum Raise∗ 100 SOL ≈ 6.5 ETH Required for launch to proceed

Per-Wallet Cap∗ 1.5 SOL ≈ 0.1 ETH Maximum user contribution

Ticket Size∗ τ 0.05 SOL ≈ 0.003 ETH Unit contribution size

Funding Window 120 hours – Deposit/refund period

LP Deployment +30-60 min – Blockhash-triggered pool creation

∗Proposed parameters. May be adjusted before mainnet. ETH equivalents approximate. Future changes updated
through governance.

Table 2: Standardized Launch Parameters

5

The 0-100 Engine v1.0

Figure 1: The 0-100 Engine Lifecycle

4 Core Mechanics

4.1 Creator Self-Snipe & Vesting Extension
A launch creator may deposit up to Smax = 8 SOL (≈ 0.5 ETH) into their own pool through
a dedicated self-snipe instruction. For each SOL deposited, the vesting period for the creator
allocation increases linearly by 24 hours per SOL.

Let s ∈ [0, Smax] be the creator’s self-snipe in SOL. The vesting time applied to the creator allocation
is:

6

The 0-100 Engine v1.0

T creator
vest = 24h · s (1)

No flooring is applied; fractional SOL extends vesting proportionally. Because s ≤ Smax and
Smax = 8, it follows that T creator

vest ≤ 8 days.

Self-snipe deposits do not receive public tickets and do not participate in the randomized selection
process. However, the deposited lamports are included in the total raise and therefore influence
overall capacity and allocation.

4.2 Capped Wallet Funding Pool
Per-wallet cap C is enforced onchain. Deposits must be in exact multiples of the ticket size τ ; any
non-multiple causes the transaction to revert.

Let a deposit amount be amounti = mi · τ with integer mi ≥ 0. The number of tickets minted in
this deposit is:

ki = min

(
mi,

⌊
C − depositedi

τ

⌋)
(2)

where depositedi is the wallet’s cumulative accepted deposit before this transaction. Receipts are
issued to each wallet for the number of tickets minted.

4.3 Overflow + Randomized Allocation
If
∑

ni · τ ≤ H, all tickets are approved.

If oversubscribed, define capacity K = ⌊H/τ⌋ and uniformly sample K tickets without replacement
from the multiset of all tickets using a blockhash-derived seed.

For wallet i, selected tickets yi define:

ai = yi · τ (approved amount) (3)

ri = depositi − ai (refund) (4)

4.4 Selection Probability
Let total ticket count be N and capacity K = ⌊H/τ⌋. A wallet with ni tickets has probability of at
least one selection:

P (Yi ≥ 1) = 1−
(
N−ni

K

)(
N
K

) (5)

Tickets are non-transferable (receipt mints are bound to the depositing wallet); they only confer
selection and claim rights to that wallet.

4.5 Sale Allocation & Claim
Let Asale denote the Sale bucket (48.14% of total supply), ai denotes the approved ticket value for
wallet i, and each aj denotes the approved ticket value for wallet j across all selected wallets.

Each approved wallet i receives:

7

The 0-100 Engine v1.0

tokensi =
ai∑
j aj

·Asale (6)

Sale tokens have no vesting or cliff; claims open immediately after LP deployment. Creator allocation
(10%) follows 12-month linear vesting.

4.6 Randomized LP Creation Window
The creator precommits an LP deployment window of +30-60 minutes after selection finalization.
During this window, each eligible blockhash hk is interpreted as a 256-bit integer.

A blockhash-based RNG triggers LP deployment if:

hk ∈ RLP (7)

where RLP is a predefined numeric interval unique for the launch (to prevent multi-project colli-
sions).

During the +30-60 min window, LP creation is triggered when the first blockhash that falls within
the predefined interval appears. Anyone can execute LP deployment once a valid blockhash is
observed.

Initial price is set by the pair ratio:

P0 =
baseLP

tokenLP
(8)

4.7 Built-in Anti-Snipe
Because allocations are fixed before trading, and LP timing is determined by a blockhash within
a bounded window, coordinated sniping has limited effect on initial distribution. The randomized
LP trigger further prevents predictable listing moments.

4.8 Post-Listing Fees & Distribution
DEX trading fees from the protocol-owned LP position are harvested by the engine program via the
income_dispatcher authority. Let FDEX be accumulated fees. Distribution follows a market-cap
indexed dynamic split:

FDEX = FCreator + FCommunity + FXyber (9)

Platform-fee buybacks: Protocol platform fees designated for buybacks are used to market-buy
$XYBER (80% from all protocol fees). Routing is entirely onchain and publicly auditable.

8

The 0-100 Engine v1.0

5 Token Supply & Economic Flows
The 0-100 Engine enforces a uniform supply structure and post-launch economic flow that applies
identically to every project. All allocations, vesting rules and fee mechanics are predetermined by
the Engine preset and executed onchain without creator-side tuning.

5.1 Standardized Supply Split
Every launch follows the same fixed supply distribution:

• 48.14% – Sale Allocation. Distributed to selected contributors in proportion to their approved
deposits. Sale tokens unlock immediately after LP deployment.

• 41.86% – Liquidity Allocation. Permanently paired with the raised SOL to form protocol-
owned liquidity. LP tokens remain locked under program authority.

• 10% – Creator Allocation. Subject to a 12-month linear vesting schedule. The vesting timeline
may be extended through creator self-snipe deposits.

5.2 Dynamic Fee Model
Once trading begins, fees from the protocol-owned LP position are harvested onchain and routed
through a dynamic distribution model indexed by fully diluted market capitalization.

Step Market Cap (SOL) Market Cap (ETH) Creator % Xyber % Community %

1 0 – 500 0 – 20 25 60 15

2 501 – 1,500 21 – 65 56 30 14

3 1,501 – 4,000 66 – 175 53 34 13

4 4,001 – 10,000 176 – 435 51 37 12

5 10,001 – 20,000 436 – 875 49 40 11

6 20,001 – 30,000 876 – 1300 47 43 10

7 30,001 – 50,000 1301 – 2200 44 47 9

8 50,001 – 70,000 2201 – 3050 41 51 8

9 70,001 – 100,000 3051 – 4350 37 56 7

10 > 100,000 > 4350+ 34 60 6

Table 3: Dynamic Fee Model

5.3 $XYBER Buybacks & Treasury Flows
The protocol’s share of fees is divided into two channels:

• 80% – Continuous $XYBER Buybacks. Used to market-buy $XYBER via the designated
DEX pair. All buyback operations are fully onchain and verifiable.

• 20% – Xyber Treasury Growth. Accumulated in the protocol vault to support long-term
incentives and ecosystem development.

9

The 0-100 Engine v1.0

6 On-Chain Architecture
The 0-100 Engine is a fully permissionless launch system composed of two onchain programs. Once
a launch is initialized, all steps (funding, selection, minting, liquidity creation, and fee routing) are
driven exclusively by program logic and protocol-owned authorities. No creator, admin, or off-chain
service can override the preset or seize user funds.

6.1 Contract Surface

6.1.1 engine program

Core execution layer for a launch. It:

• initializes launches under a single immutable preset (caps, τ , supply split, vesting)

• handles deposits, withdrawals and ticketization into the protocol-owned escrow account

• finalizes selection using a blockhash-derived permutation of public tickets

• mints the full token supply, initializes metadata and creates the Raydium/UniSwap CLMM
pool

• pairs SOL/ETH with the Liquidity Allocation and opens claims for users, creator and team

• harvests DEX fees and applies the dynamic fee split

All state transitions are validated onchain; any violation of invariants causes the transaction to
revert.

6.1.2 income_dispatcher program

Minimal coordinator that:

• stores the platform income configuration

• exposes a protocol-owned authority allowed to call the engine’s fee-collection instruction via
CPI

It cannot change launch parameters or move user funds by itself; it only proves that fee collection
is authorized.

6.2 Permissionless Trust Model
The Engine is designed so that safety and fairness follow from code, not from trusted operators:

• Permissionless entrypoints. Any wallet can invoke public instructions (deposit, withdraw,
roster finalization, LP creation, fee collection) as long as time and state checks pass. There are
no whitelists or privileged callers for the launch flow.

• Immutable preset. Parameters such as hard cap, minimum raise, per-wallet cap, ticket size,
supply split, vesting rules and fee schedule are enforced by the engine program. The creator
cannot tune them per launch and they become immutable once the launch is initialized.

• Non-custodial PDAs. All SOL/ETH and token flows go through PDAs (not EOAs). The
escrow_authority PDA signs transfers and mints, the income_dispatcher_authority PDA is
the only allowed signer for CLMM fee collection. No private key can unilaterally redirect assets.

• Scoped admin multisig. A 2-of-3 or 3-of-3 admin set controls only the global EngineConfig
(e.g. XYBER mint, creation fee, treasury address). Admins cannot modify an existing launch,
its selection results, LP parameters, vesting or refunds.

10

The 0-100 Engine v1.0

• Deterministic randomness and ordering. Selection and LP timing rely on recent block-
hashes from the SlotHashes sysvar within bounded windows. This removes reliance on off-chain
randomness and prevents ex post rescheduling of listing events.

Together, these properties make each 0-100 launch a deterministic, auditable state machine with
permissionless access and strictly limited governance surface.

7 Security & Audit Status
The 0-100 Engine is undergoing a comprehensive security audit by a tier-1 blockchain security
firm. The audit scope covers:

• Engine program logic and state transitions

• PDA authority separation and fund flows

• Randomness derivation and manipulation resistance

• Fee distribution and buyback routing

The full audit report will be published prior to the first launch.

All smart contract code will be open source and available for public review following release.

8 Limitations & Risks
The 0-100 Engine minimizes discretionary risk but does not eliminate all forms of uncertainty:

• Market risk. The Engine guarantees fair distribution and protocol-owned liquidity. It does not
guarantee token price performance post-launch.

• Smart contract risk. Despite audits, undiscovered vulnerabilities may exist. Users should not
contribute more than they can afford to lose.

• Regulatory uncertainty. Token launches may be subject to evolving legal frameworks across
jurisdictions. Participants are responsible for compliance with applicable laws.

11

The 0-100 Engine v1.0

9 Conclusion
The 0-100 Engine replaces discretionary launch mechanics with deterministic, verifiable protocol
rules. Fairness constraints are encoded directly into the execution layer. The structural advantages
that have historically favored bots, insiders, and sophisticated actors are eliminated by design.

Every launch follows the same preset. Every allocation is auditable. Every fee flow is onchain. No
exceptions. No negotiations. No backdoors.

This is not an incremental improvement. It is a structural reset.

Trust becomes a property of code, not reputation. And for the first time, the rules apply equally
to everyone.

References
1. Solana Foundation. SlotHashes Sysvar Documentation. https://docs.solana.com

2. Raydium Protocol. CLMM Technical Specification. https://docs.raydium.io

12

https://docs.solana.com
https://docs.raydium.io

	Abstract
	Problem Statement and Design Principles
	Structural Issues in Existing Launch Mechanisms
	Design Principles

	Launch Models Comparison
	The 0-100 Engine Overview
	Actors & Roles
	Launch Lifecycle
	Standardized Launch Parameters

	Core Mechanics
	Creator Self-Snipe & Vesting Extension
	Capped Wallet Funding Pool
	Overflow + Randomized Allocation
	Selection Probability
	Sale Allocation & Claim
	Randomized LP Creation Window
	Built-in Anti-Snipe
	Post-Listing Fees & Distribution

	Token Supply & Economic Flows
	Standardized Supply Split
	Dynamic Fee Model
	$XYBER Buybacks & Treasury Flows

	On-Chain Architecture
	Contract Surface
	engine program
	income_dispatcher program

	Permissionless Trust Model

	Security & Audit Status
	Limitations & Risks
	Conclusion
	References

