The 0-100 Engine®

The First Fair Launch Primitive

The Collective
January 2026

v1.0

The 0-100 Engine v1.0

Abstract

Bonding curves enabled permissionless launches but favored speed over fairness. The 0-100 ENGINE
is the next primitive: a fully onchain launch mechanism where the rules are fixed, verifiable, and
equal for everyone.

Each launch follows a single, immutable preset: capped contributions, ticket-based funding, ran-
domized selection for overflow, and automatic liquidity deployment. No creator-side tuning. No
discretionary decisions. All parameters enforced by the protocol.

Unused contributions are fully refundable. Supply splits are standardized. Liquidity is protocol-
owned. Post-listing fees flow back to creators, the community, and the Xyber treasury.

Fairness is a property of the code, not a promise.

Contents
Abstract

1 Problem Statement and Design Principles
1.1 Structural Issues in Existing Launch Mechanisms
1.2 Design Principles e

2 Launch Models Comparison

3 The 0-100 Engine Overview
3.1 Actors & Roles
3.2 Launch Lifecycle o
3.3 Standardized Launch Parameters 0oL,

4 Core Mechanics
4.1 Creator Self-Snipe & Vesting Extension
4.2 Capped Wallet Funding Pool L o
4.3 Overflow + Randomized Allocation
4.4 Selection Probability Lo
4.5 Sale Allocation & Claim e e
4.6 Randomized LP Creation Window
4.7 Built-in Anti-Snipe oL
4.8 Post-Listing Fees & Distribution L oL

5 Token Supply & Economic Flows
5.1 Standardized Supply Split
5.2 Dynamic Fee Model
5.3 $XYBER Buybacks & Treasury Flows

6 On-Chain Architecture
6.1 Contract Surface e e
6.1.1 engine program Lol
6.1.2 income dispatcher program L o000
6.2 Permissionless Trust Model

7 Security & Audit Status
8 Limitations & Risks
9 Conclusion

References

0 0000~ N3~ o (GBS B B

© © o ©

10
10
10
10
10

11

11

12

12

The 0-100 Engine v1.0

1 Problem Statement and Design Principles

1.1 Structural Issues in Existing Launch Mechanisms

Open token launches expose participants to a set of well-documented structural failures:

e Execution asymmetry. Participants with superior infrastructure (custom RPCs, MEV bots,
private orderflow) gain persistent advantages through priority gas auctions and optimized trans-

action ordering.

e Allocation opacity. Distribution is governed by allowlists, off-chain negotiations, or configurable
policies, making independent verification of allocation integrity impossible.

e Liquidity initialization risk. Pool parameters, initial pricing, and lockup conditions are fre-
quently controlled by creators, enabling fake pools, mispriced listings, or liquidity withdrawal
post-launch.

e Capital inefficiency. In oversubscribed sales, excess funds are trapped or returned through ad-
hoc logic. Users incur transaction costs without guarantees on final allocation or refundability.

As demand for a launch increases, these structural problems become more severe: more bots, more

gas competition, and greater uncertainty around how and when liquidity will actually be deployed.

1.2 Design Principles

The 0-100 ENGINE addresses these failures through six invariants enforced at the protocol level:

1. Symmetric participation. Per-wallet caps and ticketized contributions ensure allocation is
determined by protocol rules, not transaction speed, gas bidding, or off-chain negotiation.

2. Deterministic execution. The entire lifecycle (funding, selection, minting, liquidity creation,
claims) is encoded in a self-contained program with deterministic state transitions and explicit
authority separation via PDAs.

3. Unbiased randomness. Overflow selection and LP timing derive from blockhash-based ran-
domness. All participants face identical probabilistic conditions.

4. Protocol-owned liquidity. LP parameters are precommitted. A fixed supply share is routed
into protocol-controlled liquidity with defined lockup behavior.

5. Transparent economics. Supply splits and post-listing fee distribution are standardized and
onchain. No per-project negotiation.

6. Non-custodial execution. All funds flow through PDAs. No single key can redirect assets,
override selection, or modify parameters post-initialization.

These invariants collectively define the constraints under which the 0-100 ENGINE operates: one
preset, fully observable onchain behavior, and no reliance on discretionary off-chain decisions for

either allocation or economics.

The 0-100 Engine

2 Launch Models Comparison

Existing launchpads generally follow one of three patterns: gas-priority IDOs, private/whitelisted
allocations, or unstructured meme-driven listings. Each model defines execution rules, allocation

logic, liquidity formation, and incentive alignment in fundamentally different ways.

The 0-100 ENGINE introduces a fourth category: a standardized, non-configurable preset where all

core parameters are enforced directly onchain.

Criterion Traditional Private/ Meme 0-100 Engine
IDOs Whitelisted Pumps

Execution Gas bidding, Off-chain selec- Instant trad- Deterministic flow,
mempool order- tion, allowlists ing, high bot fixed tickets, strict
ing activity caps

Allocation First-come-first- Discretionary No structured Randomized selection;
served per-user sale full refunds

Transparency Low Low Medium High

Fairness Bot advantage Insider advan- Early-buyer Symmetric constraints

tage dominance

Liquidity Manual, discre- Negotiated Creator- Protocol-owned, auto-
tionary terms controlled mated

Capital Ef- Low Medium Unpredictable High

ficiency

Table 1: Launch Model Comparison

The 0-100 Engine

v1.0

3 The 0-100 Engine Overview

3.1 Actors & Roles

e Creator. Creates the agent and initiates the token launch through the 0-100 ENGINE. Receives
a vested allocation after a successful launch and operates the project’s Rewards Portal.

e Contributors. Deposit SOL during the funding phase in exchange for tickets. Selected contrib-

utors receive token allocation proportional to their approved deposits; unselected contributions

are fully refundable.

e Engagers. Participate in quests and leaderboards within the project’s Rewards Portal post-

launch. Earn a share of trading fees routed through the income dispatcher.

e Xyber Protocol. Provides the standardized launch framework, enforces all parameters onchain,

deploys and owns the liquidity pool, and routes trading fees into the dynamic fee distribution

system.

3.2 Launch Lifecycle

The 0-100 ENGINE structures every launch as a deterministic, fully onchain sequence:

- w

Creator initializes the launch with precommitted parameters

Users contribute through ticketized deposits within wallet caps

Protocol resolves overflow using blockhash-based randomness

Liquidity is deployed at a probabilistically selected block

Post-launch trading fees flow to creators, community, and buybacks

This lifecycle removes timing manipulation, enforces strict per-wallet and hard caps, guarantees re-

fundability of unused contributions, and standardizes liquidity and fee mechanics across all projects.

3.3 Standardized Launch Parameters

All launches follow the same fixed parameter set:

Parameter

SOL

ETH Equivalent

Description

Total Supply
Sale Allocation

Liquidity Allocation
Creator Allocation

Creator Self-Snipe

Hard Cap”*

Minimum Raise*

Per-Wallet Cap™

Ticket Size® T

Funding Window
LP Deployment

1,000,000,000
48.14%
41.86%

10%

Up to 8 SOL
450 SOL

100 SOL

1.5 SOL
0.05 SOL
120 hours
+30-60 min

0.5 ETH
~ 30 ETH
~ 6.5 ETH
~ 0.1 ETH
~ 0.003 ETH

R

Hard-coded per launch

Distributed to selected contributors
Permanently paired into initial pool
Linear vesting over 12 months
Each 1 SOL adds 24h vesting
Maximum accepted raise

Required for launch to proceed
Maximum user contribution

Unit contribution size
Deposit/refund period
Blockhash-triggered pool creation

* Proposed parameters. May be adjusted before mainnet. ETH equivalents approrimate. Future changes updated
through governance.

Table 2: Standardized Launch Parameters

The 0-100 Engine v1.0

0-100 userflow
Legend
-
prsesions
v 4
Manage Rewards Portal Quests

N

v 4
Creator Deposits for snipe
N
2
\c— Yes = Within per-wallet cap?

Accept deposit

\I(/

—

Blockhash-based RNG Lottery

User selected by RNG?

Yes

v

L 4

S e N ———— d’_ ________________________________
\ ¢ Trading time ,}—:\\-(,

A
V- A%

- Collect Fees
v 7 g v N
Buyback $XYB Xyber Treasury Share fees with creator Share fees with engagers
N \ y J
vV

END

Figure 1: The 0-100 Engine Lifecycle

4 Core Mechanics

4.1 Creator Self-Snipe & Vesting Extension

A launch creator may deposit up to Spax = 8 SOL (= 0.5 ETH) into their own pool through
a dedicated self-snipe instruction. For each SOL deposited, the vesting period for the creator
allocation increases linearly by 24 hours per SOL.

Let s € [0, Smax] be the creator’s self-snipe in SOL. The vesting time applied to the creator allocation

1S:

The 0-100 Engine v1.0

Tcreator =924h - s (1)

vest

No flooring is applied; fractional SOL extends vesting proportionally. Because s < Spax and
Smax = 8, it follows that Treator < 8 days.

vest

Self-snipe deposits do not receive public tickets and do not participate in the randomized selection
process. However, the deposited lamports are included in the total raise and therefore influence
overall capacity and allocation.

4.2 Capped Wallet Funding Pool

Per-wallet cap C' is enforced onchain. Deposits must be in exact multiples of the ticket size 7; any
non-multiple causes the transaction to revert.

Let a deposit amount be amount; = m; - 7 with integer m; > 0. The number of tickets minted in
this deposit is:

k. — min (mi? {C — deposnediJ) @)

T

where deposited; is the wallet’s cumulative accepted deposit before this transaction. Receipts are
issued to each wallet for the number of tickets minted.

4.3 Overflow + Randomized Allocation
If > n; -7 < H, all tickets are approved.

If oversubscribed, define capacity K = | H/7] and uniformly sample K tickets without replacement
from the multiset of all tickets using a blockhash-derived seed.

For wallet i, selected tickets y; define:

a; =Y T (approved amount) (3)

r; = deposit; — a; (refund) (4)

4.4 Selection Probability

Let total ticket count be N and capacity K = | H/7]. A wallet with n; tickets has probability of at
least one selection:

PY;>1)=1- (i) (5)

N

()
Tickets are non-transferable (receipt mints are bound to the depositing wallet); they only confer
selection and claim rights to that wallet.

4.5 Sale Allocation & Claim

Let Agale denote the Sale bucket (48.14% of total supply), a; denotes the approved ticket value for
wallet ¢, and each a; denotes the approved ticket value for wallet j across all selected wallets.

Each approved wallet ¢ receives:

The 0-100 Engine v1.0

a
tokens; = —— - Aqalo (6)
Zj aj

Sale tokens have no vesting or cliff; claims open immediately after LP deployment. Creator allocation
(10%) follows 12-month linear vesting.
4.6 Randomized LP Creation Window

The creator precommits an LP deployment window of 430-60 minutes after selection finalization.
During this window, each eligible blockhash hy, is interpreted as a 256-bit integer.

A blockhash-based RNG triggers LP deployment if:

hi € Rip (7)

where Rpp is a predefined numeric interval unique for the launch (to prevent multi-project colli-
sions).

During the +30-60 min window, LP creation is triggered when the first blockhash that falls within
the predefined interval appears. Anyone can execute LP deployment once a valid blockhash is
observed.

Initial price is set by the pair ratio:

base
jo LP
tokenr,p

4.7 Built-in Anti-Snipe

Because allocations are fixed before trading, and LP timing is determined by a blockhash within
a bounded window, coordinated sniping has limited effect on initial distribution. The randomized
LP trigger further prevents predictable listing moments.

4.8 Post-Listing Fees & Distribution

DEX trading fees from the protocol-owned LP position are harvested by the engine program via the
income_dispatcher authority. Let Fprx be accumulated fees. Distribution follows a market-cap
indexed dynamic split:

FDEX = FCrcator + FCommunity + FXybcr (9)

Platform-fee buybacks: Protocol platform fees designated for buybacks are used to market-buy
$XYBER (80% from all protocol fees). Routing is entirely onchain and publicly auditable.

The 0-100 Engine v1.0

5 Token Supply & Economic Flows

The 0-100 ENGINE enforces a uniform supply structure and post-launch economic flow that applies
identically to every project. All allocations, vesting rules and fee mechanics are predetermined by
the Engine preset and executed onchain without creator-side tuning.

5.1 Standardized Supply Split

Every launch follows the same fixed supply distribution:

e 48.14% — Sale Allocation. Distributed to selected contributors in proportion to their approved
deposits. Sale tokens unlock immediately after LP deployment.

e 41.86% — Liquidity Allocation. Permanently paired with the raised SOL to form protocol-
owned liquidity. LP tokens remain locked under program authority.

e 10% — Creator Allocation. Subject to a 12-month linear vesting schedule. The vesting timeline
may be extended through creator self-snipe deposits.

5.2 Dynamic Fee Model

Once trading begins, fees from the protocol-owned LP position are harvested onchain and routed
through a dynamic distribution model indexed by fully diluted market capitalization.

Step Market Cap (SOL) Market Cap (ETH) Creator % Xyber % Community %

1 0 - 500 0-20 25 60 15
2 501 — 1,500 21 - 65 56 30 14
3 1,501 - 4,000 66 — 175 53 34 13
4 4,001 - 10,000 176 — 435 51 37 12
5 10,001 — 20,000 436 — 875 49 40 11
6 20,001 - 30,000 876 — 1300 47 43 10
7 30,001 - 50,000 1301 — 2200 44 47 9
8 50,001 - 70,000 2201 — 3050 41 51 8
9 70,001 — 100,000 3051 — 4350 37 56 7
10 > 100,000 > 4350+ 34 60 6

Table 3: Dynamic Fee Model

5.3 $XYBER Buybacks & Treasury Flows

The protocol’s share of fees is divided into two channels:

e 80% — Continuous $XYBER Buybacks. Used to market-buy $XYBER via the designated
DEX pair. All buyback operations are fully onchain and verifiable.

e 20% — Xyber Treasury Growth. Accumulated in the protocol vault to support long-term
incentives and ecosystem development.

The 0-100 Engine v1.0

6 On-Chain Architecture

The 0-100 ENGINE is a fully permissionless launch system composed of two onchain programs. Once
a launch is initialized, all steps (funding, selection, minting, liquidity creation, and fee routing) are
driven exclusively by program logic and protocol-owned authorities. No creator, admin, or off-chain
service can override the preset or seize user funds.

6.1 Contract Surface

6.1.1 engine program

Core execution layer for a launch. It:

e initializes launches under a single immutable preset (caps, 7, supply split, vesting)
e handles deposits, withdrawals and ticketization into the protocol-owned escrow account
e finalizes selection using a blockhash-derived permutation of public tickets

e mints the full token supply, initializes metadata and creates the Raydium/UniSwap CLMM
pool

e pairs SOL/ETH with the Liquidity Allocation and opens claims for users, creator and team
e harvests DEX fees and applies the dynamic fee split
All state transitions are validated onchain; any violation of invariants causes the transaction to
revert.

6.1.2 income_dispatcher program

Minimal coordinator that:

e stores the platform income configuration

e exposes a protocol-owned authority allowed to call the engine’s fee-collection instruction via
CPI

It cannot change launch parameters or move user funds by itself; it only proves that fee collection
is authorized.

6.2 Permissionless Trust Model

The Engine is designed so that safety and fairness follow from code, not from trusted operators:

e Permissionless entrypoints. Any wallet can invoke public instructions (deposit, withdraw,
roster finalization, LP creation, fee collection) as long as time and state checks pass. There are
no whitelists or privileged callers for the launch flow.

e Immutable preset. Parameters such as hard cap, minimum raise, per-wallet cap, ticket size,
supply split, vesting rules and fee schedule are enforced by the engine program. The creator
cannot tune them per launch and they become immutable once the launch is initialized.

e Non-custodial PDAs. All SOL/ETH and token flows go through PDAs (not EOAs). The
escrow_authority PDA signs transfers and mints, the income_dispatcher_authority PDA is
the only allowed signer for CLMM fee collection. No private key can unilaterally redirect assets.

e Scoped admin multisig. A 2-0f-3 or 3-0f-3 admin set controls only the global EngineConfig
(e.g. XYBER mint, creation fee, treasury address). Admins cannot modify an existing launch,
its selection results, LP parameters, vesting or refunds.

10

The 0-100 Engine v1.0

e Deterministic randomness and ordering. Selection and LP timing rely on recent block-
hashes from the SlotHashes sysvar within bounded windows. This removes reliance on off-chain
randomness and prevents ex post rescheduling of listing events.

Together, these properties make each 0-100 launch a deterministic, auditable state machine with

permissionless access and strictly limited governance surface.

7 Security & Audit Status

The 0-100 ENGINE is undergoing a comprehensive security audit by a tier-1 blockchain security
firm. The audit scope covers:

e Engine program logic and state transitions
e PDA authority separation and fund flows
e Randomness derivation and manipulation resistance

e Fee distribution and buyback routing

The full audit report will be published prior to the first launch.

All smart contract code will be open source and available for public review following release.

8 Limitations & Risks

The 0-100 ENGINE minimizes discretionary risk but does not eliminate all forms of uncertainty:

e Market risk. The Engine guarantees fair distribution and protocol-owned liquidity. It does not
guarantee token price performance post-launch.

e Smart contract risk. Despite audits, undiscovered vulnerabilities may exist. Users should not
contribute more than they can afford to lose.

e Regulatory uncertainty. Token launches may be subject to evolving legal frameworks across
jurisdictions. Participants are responsible for compliance with applicable laws.

11

The 0-100 Engine v1.0

9 Conclusion

The 0-100 ENGINE replaces discretionary launch mechanics with deterministic, verifiable protocol
rules. Fairness constraints are encoded directly into the execution layer. The structural advantages
that have historically favored bots, insiders, and sophisticated actors are eliminated by design.

Every launch follows the same preset. Every allocation is auditable. Every fee flow is onchain. No
exceptions. No negotiations. No backdoors.

This is not an incremental improvement. It is a structural reset.

Trust becomes a property of code, not reputation. And for the first time, the rules apply equally

to everyone.

References
1. Solana Foundation. SlotHashes Sysvar Documentation. https://docs.solana.com

2. Raydium Protocol. CLMM Technical Specification. https://docs.raydium.io

12

https://docs.solana.com
https://docs.raydium.io

	Abstract
	Problem Statement and Design Principles
	Structural Issues in Existing Launch Mechanisms
	Design Principles

	Launch Models Comparison
	The 0-100 Engine Overview
	Actors & Roles
	Launch Lifecycle
	Standardized Launch Parameters

	Core Mechanics
	Creator Self-Snipe & Vesting Extension
	Capped Wallet Funding Pool
	Overflow + Randomized Allocation
	Selection Probability
	Sale Allocation & Claim
	Randomized LP Creation Window
	Built-in Anti-Snipe
	Post-Listing Fees & Distribution

	Token Supply & Economic Flows
	Standardized Supply Split
	Dynamic Fee Model
	$XYBER Buybacks & Treasury Flows

	On-Chain Architecture
	Contract Surface
	engine program
	income_dispatcher program

	Permissionless Trust Model

	Security & Audit Status
	Limitations & Risks
	Conclusion
	References

